Hybrid Series and Shunt Filter with Power Quality Monitoring System |
Author(s): |
Poonam Rani Rajwade , RSR Rungta College of Engineering,; Manish Chandrakar, RSR Rungta College of Engineering |
Keywords: |
Hybrid, Series, Shunt, Power Quality Monitoring |
Abstract |
Power system harmonics are a menace to electric power systems with disastrous consequences. The line current harmonics cause increase in losses, instability, and also voltage distortion. With the proliferation of the power electronics converters and increased use of magnetic, power lines have become highly polluted. Both passive and active filters have been used near harmonic producing loads or at the point of common coupling to block current harmonics. Shunt filters still dominate the harmonic compensation at medium/high voltage level, whereas active filters have been proclaimed for low/medium voltage ratings. With diverse applications involving reactive power together with harmonic compensation, passive filters are found suitable. Passive filtering has been preferred for harmonic compensation in distribution systems due to low cost, simplicity, reliability, and control less operation. The uncontrolled ac-dc converter suffers from operating problems of poor power factor, injection of harmonics into the ac mains, variations in dc link voltage of input ac supply, equipment overheating due to harmonic current absorption, voltage distortion due to the voltage drop caused by harmonic currents flowing through system impedances, interference on telephone and communication line etc. The circuit topologies such as passive filters, ac-dc converter, based improved power quality ac dc converters are designed, modeled and implemented. The main emphasis of this investigation has been on a compactness of configurations, simplicity in control, reduction in rating of components, thus finally leading to saving in overall cost. Based on thesis considerations, a wide range of configurations of power quality mitigators are developed, which is expected to provide detailed exposure to design engineers to choose a particular configuration for a specific application under the given constraints of economy and desired performance. For bidirectional power flow applications, the current source converter is designed and simulated with R-L load. |
Other Details |
Paper ID: IJSRDV7I50114 Published in: Volume : 7, Issue : 5 Publication Date: 01/08/2019 Page(s): 503-506 |
Article Preview |
|
|